IEEJ Transactions on Industry Applications
Online ISSN : 1348-8163
Print ISSN : 0913-6339
ISSN-L : 0913-6339
Paper
Discrimination of Human Forearm Motions on the Basis of Myoelectric Signals by Using Adaptive Fuzzy Inference System
Atsushi KisoHirokazu Seki
Author information
JOURNAL FREE ACCESS

2010 Volume 130 Issue 11 Pages 1272-1278

Details
Abstract
This paper describes a method for discriminating of the human forearm motions based on the myoelectric signals using an adaptive fuzzy inference system. In conventional studies, the neural network is often used to estimate motion intention by the myoelectric signals and realizes the high discrimination precision. On the other hand, this study uses the fuzzy inference for a human forearm motion discrimination based on the myoelectric signals. This study designs the membership function and the fuzzy rules using the average value and the standard deviation of the root mean square of the myoelectric potential for every channel of each motion. In addition, the characteristics of the myoelectric potential gradually change as a result of the muscle fatigue. Therefore, the motion discrimination should be performed by taking muscle fatigue into consideration. This study proposes a method to redesign the fuzzy inference system such that dynamic change of the myoelectric potential because of the muscle fatigue will be taken into account. Some experiments carried out using a myoelectric hand simulator show the effectiveness of the proposed motion discrimination method.
Content from these authors
© 2010 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top