抄録
This paper presents a medium-voltage motor drive with a modular multilevel PWM inverter, and focuses on a startup method and its performance. It is formed by six modular arms, each of which consists of a cascaded stack of multiple bidirectional chopper-cells. The frequency of the dominant ac-voltage fluctuation is equal to the motor (inverter) frequency. These fluctuations occur in the dc capacitor of each chopper-cell, and the magnitude of the fluctuation is inversely proportional to the motor frequency. Because of the increased voltage fluctuation in low-frequency regions, the so-called “volt-per-hertz control” cannot be applied in motor starting. The startup method proposed in this paper is suitable for a motor drive with the modular multilevel PWM inverter. It enables the motor to produce a startup torque loaded on the motor at an initial amplitude and a fixed frequency of the inverter while taking into account constraints on the motor current and the ac-voltage fluctuation. The validity of the startup method as well as the startup performance is confirmed by experiment and simulation.