IEEJ Transactions on Industry Applications
Online ISSN : 1348-8163
Print ISSN : 0913-6339
ISSN-L : 0913-6339
Paper
Derivation of Instantaneous Wye and Zero-Phase Sequence Voltages from Line-Line Voltages in Unbalanced 3-Phase 3-Wire Systems and Application of This Method to 3-Phase PWM Converter Control
Itsuo YuzuriharaAtsuo Kawamura
Author information
JOURNAL FREE ACCESS

2011 Volume 131 Issue 3 Pages 372-379

Details
Abstract

In general, voltage imbalances in 3-phase AC power systems are inevitable. 3-Phase PWM (Pulse Width Modulation) converter used in 3-wire systems are generally designed for use under limited imbalances of input voltages, and problems such as input current distortion, deterioration of output properties, degradation of efficiency and failure may occur in some cases.
These problems cause severe damages to industries in some cases, for example, semiconductor production machines: SEMI defined “SEMI F47-0200” and “SEMI F47-0706” standards that have to be satisfied to realize voltage sag immunity. In order to compensate the remained problems due to the unbalanced input voltages, particular storage devices are designed additionally for conventional converters. This paper proposes that the determination of both the instantaneous zero-phase sequence voltage and wye voltages is essential for 3-phase PWM converter control used for a 3-wire system to keep its output rated under occasional or long-term voltage imbalances in an AC system. This paper also describes a general new method to derive the components of the voltages of instantaneous wye and zero-phase sequence voltage from line-line voltages of a 3-wire system. This paper also describes a method to apply the voltages to control the converter. The results obtained on implementation verify that this new converter keeps its output rated under unbalanced conditions wider than those defined by SEMIs without particular storage devices as far as the AC voltages are remained live.

Content from these authors
© 2011 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top