抄録
Electric double-layer capacitors (EDLCs) offer several advantages over traditional batteries, such as long cycle life, high power capability, good low-temperature performance, etc. However, their major drawbacks, such as low specific energy and large voltage variation due to charge/discharge cycling, necessitate the use of high-efficiency power conversion electronics that can be used to efficiently discharge EDLCs and thus completely utilize the precious stored energy. In this study, we propose a novel discharger for EDLCs; this discharger uses cascaded switched capacitor converters (SCCs) and selectable intermediate taps. Although the voltage conversion ratio of SCCs is fixed, the load voltage can be maintained within a desired voltage range by the selectable intermediate taps. The circuit configuration, operating principle, and procedure for designing SCCs and selectable intermediate taps are presented. Experimental tests were performed using an EDLC module and a 200W prototype of the discharger. The obtained results showed that the 60V EDLC could be discharged to 30V with an average efficiency of 96% when the load voltage was maintained within the range 30-40V.