IEEJ Transactions on Industry Applications
Online ISSN : 1348-8163
Print ISSN : 0913-6339
ISSN-L : 0913-6339
Paper
An Inverter-Driven Induction Motor System with a Deadlock Breaking Capability
Takuto IchikawaToshiya YoshidaOsamu Miyashita
Author information
JOURNAL FREE ACCESS

2012 Volume 132 Issue 8 Pages 802-807

Details
Abstract
Induction motors are very widely used in various industrial applications. In semiconductor manufacturing processes, deadlock failure of pumps may occur by the adhering of glass material contained in the gas to the rotor. This can lead to the shutdown of the manufacturing plant. Therefore, a countermeasure to prevent deadlocking of a motor is required.
This paper proposes a method for generating an impulse torque in an induction motor fed by an inverter. The proposed inverter circuit is composed of a conventional inverter and a few additional relays. The on-and-off control of the relays supplies an appropriate magnetizing current and a large torque current from the dc-link capacitor.
In experiment, a 1.5-kW cage-type induction motor generated a torque that was approximately seven times larger than the rated torque of the motor. This large impulse torque is useful for breaking the motor deadlock.
Content from these authors
© 2012 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top