2019 Volume 139 Issue 3 Pages 276-283
We examine the iron loss properties of a nanocrystalline magnetic material (NMM) core excited by pulse width modulation (PWM) inverters with different semiconductors. We report the iron loss characteristics as a function of carrier frequency of the NMM ring core excited by two different inverters, which consist of a silicon-insulated gate bipolar transistor (Si-IGBT) and a gallium nitride-field effect transistor (GaN-FET). The iron losses of the NMM ring core under GaN-FET inverter excitation increase with the increase of carrier frequency owing to the ringing noises generated from the fast switching. However, the iron losses of the Si-IGBT-inverter-excited NMM ring core decrease slightly with increasing carrier frequency. We show that the iron loss properties of NMM ring core depend strongly on power semiconductor characteristics. In addition, to consider the ringing waveform in the NMM ring core by numerical simulations, we focus on a series RLC circuit model. We confirm that the numerical damped oscillation of the ringing calculated based on the series RLC circuit model is consistent with the experimental damped oscillation.
The transactions of the Institute of Electrical Engineers of Japan.C
The transactions of the Institute of Electrical Engineers of Japan.B
The transactions of the Institute of Electrical Engineers of Japan.A
The Journal of the Institute of Electrical Engineers of Japan