IEEJ Journal of Industry Applications
Online ISSN : 2187-1108
Print ISSN : 2187-1094
ISSN-L : 2187-1094

This article has now been updated. Please use the final version.

Using Machine Learning to Reduce Design Time for Permanent Magnet Volume Minimization in IPMSMs for Automotive Applications
Yuki ShimizuShigeo MorimotoMasayuki SanadaYukinori Inoue
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 21004461

Details
Abstract

Interior permanent magnet synchronous motors (IPMSMs) have been widely used as traction motors in electric vehicles. Finite element analysis is commonly used to design IPMSMs but is highly time-intensive. To shorten the design period for IPMSMs, various surrogate models have been constructed to predict relevant characteristics, and they have been used in the optimization of IPMSM geometry. However, to date, no surrogate models have been able to accurately predict the characteristics over the wide speed range required for automotive applications. Herein, we propose a method for accurately predicting the speed-torque characteristics of an IPMSM by using machine learning techniques. To improve the prediction accuracy, we set the motor parameters as the prediction target of the machine learning methods. We then used the trained surrogate model and a real-coded genetic algorithm to minimize the volume of the permanent magnet and showed that the design time can be significantly reduced compared with the case where only finite element analysis is used.

Content from these authors
© 2021 The Institute of Electrical Engineers of Japan
feedback
Top