電気学会論文誌B(電力・エネルギー部門誌)
Online ISSN : 1348-8147
Print ISSN : 0385-4213
ISSN-L : 0385-4213
論文
短期電力負荷予測におけるクラスタ再構成前処理手法
板垣 忠大森 啓之
著者情報
ジャーナル フリー

2005 年 125 巻 3 号 p. 302-308

詳細
抄録
This paper presents a new preconditioned method for short-term load forecasting that focuses on more accurate predicted value. In recent years, the deregulated and competitive power market increases the degree of uncertainty. As a result, more sophisticated short-term load forecasting techniques are required to deal with more complicated load behavior. To alleviate the complexity of load behavior, this paper presents a new preconditioned model. In this paper, clustering results are reconstructed to equalize the number of learning data after clustering with the Kohonen-based neural network. That enhances a short-term load forecasting model at each reconstructed cluster. The proposed method is successfully applied to real data of one-step ahead daily maximum load forecasting.
著者関連情報
© 電気学会 2005
前の記事 次の記事
feedback
Top