電気学会論文誌B(電力・エネルギー部門誌)
Online ISSN : 1348-8147
Print ISSN : 0385-4213
ISSN-L : 0385-4213
特集論文
Random Forestを用いた電力市場参加者の信用リスク評価
梅澤 康士森 啓之
著者情報
ジャーナル フリー

2008 年 128 巻 1 号 p. 165-172

詳細
抄録
A new method is proposed for credit risk evaluation in a power market. The credit risk evaluation is to measure the bankruptcy risk of the company. The power system liberalization results in new environment that puts emphasis on the profit maximization and the risk minimization. There is a high probability that the electricity transaction causes a risk between companies. So, power market players are concerned with the risk minimization. As a management strategy, a risk index is requested to evaluate the worth of the business partner. This paper proposes a new method for evaluating the credit risk with Random Forest (RF) that makes ensemble learning for the decision tree. RF is one of efficient data mining technique in clustering data and extracting relationship between input and output data. In addition, the method of generating pseudo-measurements is proposed to improve the performance of RF. The proposed method is successfully applied to real financial data of energy utilities in the power market. A comparison is made between the proposed and the conventional methods.
著者関連情報
© 電気学会 2008
前の記事 次の記事
feedback
Top