IEEJ Transactions on Power and Energy
Online ISSN : 1348-8147
Print ISSN : 0385-4213
ISSN-L : 0385-4213
Paper
A Fast Screening Method for Transient Stability considering Multi-swing Step-out using Pattern Recognition with Machine Learning and Clustering
Junnosuke KobayashiYui KoyanagiShinichi Iwamoto
Author information
JOURNAL FREE ACCESS

2017 Volume 137 Issue 8 Pages 559-565

Details
Abstract

Recently, online stability monitoring systems have become more important in response to the increasing complexity of power systems. Moreover, there has been a concern about multi-swing step-out due to the Japanese longitudinal power system. In this paper, a fast screening method is proposed considering multi-swing step-out using PCA (principal component analysis). In the proposed method, computers learn patterns of PCA in transient stability data as a form of library. In order to reduce the number of data in the library, k-means method, one of the partitioning-optimization clustering methods, is applied to extract features in the data. In addition, Gaussian mixture model is also applied to extract the feature from a different perspective. Simulations for the proposed method are performed using the IEEJ 10 machine 47 bus system to confirm the validity of the screening method.

Content from these authors
© 2017 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top