電気学会論文誌B(電力・エネルギー部門誌)
Online ISSN : 1348-8147
Print ISSN : 0385-4213
ISSN-L : 0385-4213
論文
機械学習を用いたパターン認識とクラスタリングによるN波脱調を考慮した過渡安定度高速安定判別手法
小林 淳之介小栁 唯岩本 伸一
著者情報
ジャーナル フリー

2017 年 137 巻 8 号 p. 559-565

詳細
抄録

Recently, online stability monitoring systems have become more important in response to the increasing complexity of power systems. Moreover, there has been a concern about multi-swing step-out due to the Japanese longitudinal power system. In this paper, a fast screening method is proposed considering multi-swing step-out using PCA (principal component analysis). In the proposed method, computers learn patterns of PCA in transient stability data as a form of library. In order to reduce the number of data in the library, k-means method, one of the partitioning-optimization clustering methods, is applied to extract features in the data. In addition, Gaussian mixture model is also applied to extract the feature from a different perspective. Simulations for the proposed method are performed using the IEEJ 10 machine 47 bus system to confirm the validity of the screening method.

著者関連情報
© 2017 電気学会
前の記事 次の記事
feedback
Top