電気学会論文誌B(電力・エネルギー部門誌)
Online ISSN : 1348-8147
Print ISSN : 0385-4213
ISSN-L : 0385-4213
論文
深層学習を用いたトポロジー最適化
—同時および追加学習の比較—
佐々木 秀徳日高 勇気五十嵐 一
著者情報
ジャーナル 認証あり

2020 年 140 巻 12 号 p. 858-865

詳細
抄録

Deep learning is applied to IPM motors with different magnet shapes to realize fast topology optimization. In this method, the cross-sectional image of IPM motors with I-shaped and V-shaped magnets are input to a convolutional neural network to guess their average torque. It is shown that simultaneous learning, in which CNN is trained for both datasets, is superior over the additional learning where CNN is sequentially trained for the two datasets. Moreover, it is shown that the number of required finite element analysis can be reduced to about five percent using the trained CNN in the topology optimization.

著者関連情報
© 2020 電気学会
前の記事 次の記事
feedback
Top