電気学会論文誌B(電力・エネルギー部門誌)
Online ISSN : 1348-8147
Print ISSN : 0385-4213
ISSN-L : 0385-4213
ネオコグニトロンとBPネットワークを用いた電力系統事故区間判定手法
周 迪威安田 恵一郎横山 隆一
著者情報
ジャーナル フリー

1995 年 115 巻 7 号 p. 724-733

詳細
抄録
This paper presents a new approach to identify a fault point in a power system on real time. Based on the topology theory, the characteristics of a fault in the power system are treated as a pattern of the fault. Therefore, the calculation complexity of traditional approaches can be avoided. The aim of proposed method is to identify fault points through directly analyzing the type of fault. Since each type of fault has each characteristic pattern of power flow, fault points can be identified by abstracting characteristics of power flow at each node of the power system. In order to abstract fault characteristics, Neocognitron in which symmetrical three phase decomposition and data normalization are calculated using power flow at each node is introduced. Thus, the impacts of voltage grade and unbalanced load can be removed. Since each Neocognitron corresponds to one node of the power system, hierachical autonomous decentralization can be realized. Therefore, the proposed approach can be applied to a large power system. Fault point location is done by BP network. Since the neuro of BP network only corresponds to the nodes of the topologized power system, the training of the neural network can be performed independently. From this point of view, the applicability and flexibility of proposed approach are high. The effectiveness and applicability of the proposed approach are demonstrated on a simple power system model.
著者関連情報
© 電気学会
前の記事 次の記事
feedback
Top