電気学会論文誌B(電力・エネルギー部門誌)
Online ISSN : 1348-8147
Print ISSN : 0385-4213
ISSN-L : 0385-4213
ファジィ最適回帰2進木を用いた短期電力負荷予測
森 啓之小瀬村 紀行石黒 健太近藤 徹
著者情報
ジャーナル フリー

2001 年 121 巻 12 号 p. 1849-1855

詳細
抄録
This paper proposes a hybrid method of the fuzzy optimal regression tree (FORT) and the multi-layer perceptron (MLP) of an artificial neural net for short-term load forecasting. The regression tree (RT) is useful in discovering meaningful rules and classifying data so that the relationship between input and output variables is clarified. In this paper, a couple of strategies is developed to improve the performance of RT. One is to make use of tabu search to determine the globally optimal tree structure. The other is to introduce simplified fuzzy inference into RT to enhance the accuracy of the split value. As a prefiltering technique, FORT is used to classify data into one of clusters. MLP is constructed to forecast one-step ahead daily maximum loads for each cluster. The proposed method is successfully applied to real data.
著者関連情報
© 電気学会
前の記事 次の記事
feedback
Top