IEEJ Transactions on Sensors and Micromachines
Online ISSN : 1347-5525
Print ISSN : 1341-8939
ISSN-L : 1341-8939
Paper
Fabrication of Bridged Glass Nanopillar Structure with High Scratch Resistance
Hiroyuki KuwaeTakenari SudoAkiko OkadaKousuke TakayamaShuichi ShojiJun Mizuno
Author information
JOURNAL FREE ACCESS

2017 Volume 137 Issue 3 Pages 72-77

Details
Abstract

In this study, we proposed bridged glass nanopillar structures with high scratch resistance. The glass nanopillars were joined each other with bridged structures. The bridged glass nanopillars were fabricated using anisotropic talbot photolithography and reactive ion etching. AFM and FE-SEM analyses showed that the bridged glass nanopillar structures were successfully fabricated by photolithography and dry etching. Scratch resistance of the bridged glass nanopillers improved seven times stronger than that of the nanopillers without bridged structures in friction test using a flannel cloth. Furthermore, bridged glass nanopillars were not collapsed through high stress friction test using a steel wool. Additionally, self-cleaning effect of the bridged glass nanopillars with superhydrophilic behavior were successfully demonstrated by spraying water droplets. We expect that the proposed bridged glass nanopillar structures will be a highly promising technology for self-cleaning glass.

Content from these authors
© 2017 by the Institute of Electrical Engineers of Japan
Next article
feedback
Top