2018 Volume 138 Issue 4 Pages 153-158
We fabricated a strain sensor using the inverse-magnetostrictive effect of magnetoelastic thin films, and applied it for vibration sensor. The sensor element consisted of 1 turn meander-patterned molybdenum (Mo) film as conductive layer and FeSiB magnetostrictive films that laminated a part of the meander. After annealing the element, the FeSiB films of the sensor element were subject to residual stress from Mo film and Si substrate, which induced a magnetic anisotropy of the FeSiB film via magnetoelastic coupling. From the impedance change of the element under compressive strain the sensor exhibited a gauge factor of 2,160 at a carrier frequency of 150MHz under compressive strain. In addition, a phase-difference detection circuit was fabricated to evaluate the element as a vibration sensor. When an edge load of 20g was attached to the element, the maximum signal of 288mV (45mV/deg.) correspond to vibration was obtained at the mechanical resonance frequency of 20.8Hz.
IEEJ Transactions on Industry Applications
IEEJ Transactions on Electronics, Information and Systems
IEEJ Transactions on Power and Energy
IEEJ Transactions on Fundamentals and Materials
The Journal of The Institute of Electrical Engineers of Japan
The transactions of the Institute of Electrical Engineers of Japan.C
The transactions of the Institute of Electrical Engineers of Japan.B
The transactions of the Institute of Electrical Engineers of Japan.A
The Journal of the Institute of Electrical Engineers of Japan