International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Precision Surface Finishing
Machining of Smooth Optical Surfaces by Ultraprecision Milling with Compensated Feeding Mechanisms
Hideo TakinoYoshimi Takeuchi
著者情報
ジャーナル オープンアクセス

2019 年 13 巻 2 号 p. 185-190

詳細
抄録

Waviness tends to be generated on cut surfaces even when an ultraprecision milling machine with a single-crystal diamond tool is used. The present study deals with the reduction of waviness by controlling the feeding mechanisms of the milling machine. A machining experiment on a spherical surface of a mirror element in a mirror array showed that the machined surface exhibited periodic waviness with a height of 30 nm and a wavelength of 300 μm. To investigate the reason for such waviness, a slope was machined under simultaneous multiaxis motion control of the feeding mechanisms of the milling machine. This proved that the interpolation errors of the encoders used in the milling machine produce the waviness on the machined surface when machining is carried out under simultaneous multiaxis motion control. To reduce such interpolation errors, the positioning accuracy of the machine stages was measured using a laser interferometer. On the basis of the measured results, the feeding mechanisms were compensated such that the positioning errors including the interpolation errors were corrected. Using the machine with the compensated feeding system, a mirror element was shaped. Consequently, waviness was reduced and the surface smoothness was less than 10 nm, demonstrating that such compensation can produce superior optical surfaces.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2019 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
前の記事 次の記事
feedback
Top