International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Precision Surface Finishing
Unidirectional Wetting Surfaces Fabricated by Ultrasonic-Assisted Cutting
Keita ShimadaTakuya HiraiMasayoshi MizutaniTsunemoto Kuriyagawa
著者情報
ジャーナル オープンアクセス

2019 年 13 巻 2 号 p. 191-198

詳細
抄録

Surface microstructures can provide various functionalities, and wettability is a typical surface property that can be controlled by surface textures. Unidirectional wetting properties (UWPs) have been garnering attention as a useful wetting function for industrial functions. Thus, in this study, developing UWPs using surface microstructures has been tested. First, UWPs were calculated with the thermodynamic analysis of contact angle (CA). The analytical results predicted that an increased oblique angle of the microstructures, ω2, can increase the advancing CA; the receding CAs could not be calculated, and might exhibit the pinning effect. Ultrasonic-assisted cutting was subsequently employed to fabricate hierarchical microstructures for providing UWPs to a workpiece. Although many burrs have been observed on the edges of the structures, microstructures with different oblique angles, ω2=5, 10°, and 15°, were fabricated in the designed scales. Finally, the UWPs were verified by measuring the CAs and sliding angles (SAs). The anisotropy of CA hysteresis was indicated in each oblique angle structure, and the anisotropy of SAs was confirmed when ω2=10 and 15°. The retention force ratio of a droplet, r, which indicates the UWPs, was subsequently estimated with two different approaches, and both approaches led a similar value of the attrition rates of r from ω2=10 to 15°.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2019 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
前の記事 次の記事
feedback
Top