International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Design and Manufacturing for Environmental Sustainability
Copper/Silver Recovery from Photovoltaic Panel Sheet by Electrical Dismantling Method
Chiharu TokoroSoowon LimYukihiro SawamuraMasataka KondoKazuhiro MochidzukiTaketoshi KoitaTakao NamihiraYasunori Kikuchi
著者情報
ジャーナル オープンアクセス

2020 年 14 巻 6 号 p. 966-974

詳細
抄録

The volume of spent photovoltaic (PV) panels is expected to grow exponentially in future decades. Substantial material resources such as silver (Ag), copper (Cu), aluminum (Al), silicon (Si), and glass can potentially be recovered from silicon-based PV panels. In this paper, we targeted the recovery of Cu and Ag from a cell sheet separated to a glass panel from a spent PV panel. The technical feasibility of a novel electrical dismantling method was experimentally studied. This method employed a pulsed power technology that releases high energy in a short time. It allowed a selective separation of the Cu/Ag wires from the sheet once per discharge in water. The experimental results indicated that 95.6% of the total Cu and 17.2% of the total Ag in the sample were successfully separated from the cell sheet using a 3.5-kJ capacitor bank circuit. Moreover, 3.66% of the total Si in the sample was contaminated by the separated Cu/Ag particles from the cell sheet, mainly by shockwaves generated by plasma expansion, and some of them formed a compound with Cu and Ag by eutectic melting, resulting in low liberation. At the lower energy of 3.5 kJ, eutectic melting of Cu and Ag with Si was more suppressed than 4.6 kJ, and 94.3% of Cu and 77.5% of Ag in the separated particles were liberated, which would be acceptable for further wet gravity and/or shape separation of Cu and Ag.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2020 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
前の記事 次の記事
feedback
Top