International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Regular Papers
Study on Polishing Method Using Magnetic Levitation Tool in Superconductive-Assisted Machining
Hidetaka NakashimaTatsuya NakasakiTatsuhiro TanakaYushi KinoshitaYuki TanakaPanart KhajornrungruangEdmund Soji OtabeKeisuke Suzuki
著者情報
ジャーナル オープンアクセス

2021 年 15 巻 2 号 p. 234-242

詳細
抄録

Superconductive-assisted machining (SUAM) is a polishing method that employs a magnetic levitation tool, which is based on a superconductive phenomenon called the pinning effect. Since the tool magnetically levitates, the issue of tool interference is eliminated. In this study, in order to set up the polishing conditions of the magnetic levitation tool, we evaluated the relation between the flux density distribution relative to the tool position and the holding force acting on the magnetic levitation tool to maintain its initial position, set by field cooling by the superconducting bulk. For the holding force, we measured the attractive, repulsive, restoring, and driving forces. We found that the greater the holding force, the smaller the initial distance between the superconducting bulk and the magnetic levitation tool. The attractive force was found to peak when the levitated tool was displaced 6 mm from an initial position of 9 mm from the bulk, and it became only the self-weight of the magnetic levitation tool at displacements of 30 mm and above, where the pinning effect broke down. We then evaluated the polishing characteristics for SUS304 and A1100P at a tool displacement that results in the maximum attractive force. In the polishing experiment, we employed a water-based diamond slurry because the temperature of the workpiece was close to room temperature. We found that it was possible to polish SUS304 and A1100P while avoiding the effects of magnetization due to the polishing pressure or induced currents that accompany the rotation of the metal plate. The arithmetic average roughness, Ra, of A1100P was relatively high due to the effect of scratches, while that of SUS304 improved from 92 nm before polishing to 55 nm after polishing when polished with grains with a diameter of 1 μm.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2021 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
前の記事 次の記事
feedback
Top