International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Advanced Manufacturing Science and Technologies
Morphology of Cleaved Surface and Observation of In Situ Crack Propagation During Cleaving
Soshi IwatsukiHirofumi HidaiSouta MatsusakaAkira ChibaNoboru Morita
著者情報
ジャーナル オープンアクセス

2021 年 15 巻 4 号 p. 483-491

詳細
抄録

In laser cleaving, the thermal stress caused by laser heating and water-jet cooling propagates previously induced cracks in the workpiece material. The laser-cleaving conditions affect the quality of the fracture surface, and therefore, elucidating the relationship between the cleaved surface, cleaving conditions, and crack propagation is essential. Against this backdrop, in this study, we investigated the morphology of the cleaved surface and visualized the crack propagation and stress in situ using a high-speed polarization camera. The distance between the glass edge and cleaved surface was varied. When the laser-cleavage line was close to the glass edge, twist hackles were formed on the cleaved surface. The area in which the twist hackles formed on the cleaved surface coincided with the lagging section of the crack front. Furthermore, the twist hackle reached the specimen surface, and the edge of the surface exhibited a sawtooth shape. Observations with the high-speed polarization camera revealed that the internal stress was asymmetric with respect to the crack when the twist hackles were formed.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2021 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT Official Site.
https://www.fujipress.jp/ijat/au-about/
前の記事 次の記事
feedback
Top