International Journal of Automation Technology
Online ISSN : 1883-8022
Print ISSN : 1881-7629
ISSN-L : 1881-7629
Special Issue on Recent Advanced Manufacturing Science and Technology
Prototype of Parallel Plate Type Fast Atom Beam Source and its Improvement of Irradiation Characteristics
Taisei KatoRyo MorisakiTakahiro YamazakiChiemi OkaJunpei SakuraiSeiichi Hata
著者情報
ジャーナル オープンアクセス

2024 年 18 巻 4 号 p. 513-520

詳細
抄録

Fast atom beam (FAB) source is used for surface activated bonding. This process is attracting attention as an essential process for next-generation semiconductor manufacturing. Traditional wafer direct bonding processes require annealing or cannot be directly bonded at room temperature. Therefore, there are restrictions on the materials that can be bonded and the combinations of materials that can be bonded. However, surface activated bonding has made it possible to directly bond dissimilar materials at room temperature. This technology is expected to be applied to the manufacturing of various MEMS and three-dimensional stacking of semiconductors. This bonding process involves bombarding the wafer surface with fast argon atom beam in a vacuum chamber. Irradiation removes oxide layer and contaminants, exposing dangling bonds. By pressing the wafers together, the dangling bonds are bonded together, and a strong bond is achieved. The device that generates this fast argon atom beam is FAB source. This device has been of the type that generates a saddle field electric field. However, this FAB source had a narrow beam irradiation area and was unable to support the recent increase in wafer diameter. Therefore, it was necessary to perform irradiation using multiple FAB sources. At production sites, there is a need to develop new FAB sources that can irradiate large areas. In this study, we developed FAB source in which the beam is generated by parallel plate electrodes. We performed a comparison with the saddle field type FAB source and found that the performance was inferior in initial experiments. Next, we improved the design to operate at higher voltages and increased the aperture area. Through these improvements, we have achieved performance superior to the saddle field type FAB source.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2024 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at IJAT official website.
https://www.fujipress.jp/ijat/au-about/#https://creativecommons.org/licenses/by-nd
前の記事 次の記事
feedback
Top