抄録
This paper investigates a novel casing treatment method, called recirculation-bleeding channels, which combine a recirculation channel with additional bleeding channels. The system consists of 36 channels distributed around the blades and located on rotor shroud surface of a single-stage transonic axial compressor. This study focuses on its effects on aerodynamic performance of a single-stage transonic axial compressor, NASA Stage 37. Validation of numerical model of NASA Stage 37 was performed using experimental data for the single-stage transonic axial compressor. A common drawback of flow recirculation and air bleeding is the reduction in efficiency; however, numerical results showed that with the presence of recirculation-bleeding channels, both stall margin and adiabatic efficiency of the single-stage transonic axial compressor were increased as compared to the smooth casing with small penalty in pressure ratio. A parametric study of the recirculation-bleeding channels was performed for six geometric parameters. With recirculation-bleeding channels, the compressor could reach the stall margin of 13.85% at maximum while still retaining an increase in peak adiabatic efficiency. It is also showed that proper adjustments of the channels design can eliminate the deficiency in pressure ratio at peak efficiency condition.
© 2020 Turbomachinery Society of Japan, Korean Fluid Machinery Association, Chinese Society of Engineering Thermophysics, IAHR