抄録
This study strives to develop an effective strategy to inhibit cavitation inception on hydrofoils by using local cooling technique. By setting up a temperature boundary condition and cooling a small area on the upper surface of a hydrofoil, the fluid temperature around the cooling surface will be decreased and thereby the corresponding liquid saturation pressure will drop below the lowest absolute pressure within the flow field. Hence, cavitation can never occur. In this paper, a NACA0015 hydrofoil at 4° angle of attack was numerically investigated to verify the effectiveness of the proposed technique. The CFD results indicate that the cooling temperature and the cooling surface roughness are the critical factors affecting the success of such technique used for cavitation suppression.
© 2010 Turbomachinery Society of Japan, Korean Fluid Machinery Association, Chinese Society of Engineering Thermophysics, IAHR