システム制御情報学会論文誌
Online ISSN : 2185-811X
Print ISSN : 1342-5668
ISSN-L : 1342-5668
論文
報酬の設定を自動化した集中型高速マルチエージェント強化学習法
佐々木 薫飯間 等
著者情報
ジャーナル フリー

2022 年 35 巻 3 号 p. 39-47

詳細
抄録

For multiagent environments, a centralized reinforcement learner can find optimal policies, but it is time-consuming. A method is proposed for finding the optimal policies acceleratingly, and it uses the centralized learner in combination with supplemental independent learners. In order to prevent the failure of learning, the independent learners must stop in a timely manner, which is done through finely tuning a reward. The reward tuning, however, requires additional time and effort. This paper proposes a reinforcement learning method in which the reward is automatically set.

著者関連情報
© 2022 一般社団法人 システム制御情報学会
次の記事
feedback
Top