システム制御情報学会論文誌
Online ISSN : 2185-811X
Print ISSN : 1342-5668
ISSN-L : 1342-5668
ニューラルネットワークの学習によるロバストな制御系の構築法
中西 弘明井上 紘一
著者情報
ジャーナル フリー

1999 年 12 巻 10 号 p. 625-632

詳細
抄録
This paper proposes two efficient methods to design a robust feedback control system by use of neural networks. The first method is based on L2 gain, and two different neural networks are used. The controller is trained to be robust as a result of competition between neural networks. The second method is based on MiniMax optimization, and is useful to treat parametric uncertainties. In both methods, robustness of the neural network can be quantified. It is very easy to combine proposed methods so that effective methods for various problems can be derived.
著者関連情報
© システム制御情報学会
前の記事 次の記事
feedback
Top