システム制御情報学会論文誌
Online ISSN : 2185-811X
Print ISSN : 1342-5668
ISSN-L : 1342-5668
フィルタリングルールの逐次的学習による対話的Webページ検索
岡部 正幸山田 誠二
著者情報
ジャーナル フリー

2003 年 16 巻 11 号 p. 574-582

詳細
抄録
Web search engines are useful tools which can meet the various information needs of users. However they often return hit-lists which contain many unnecessary pages. This paper proposes a method which automatically removes those unnecessary pages by learning filters through relevance feedback. Filters consist of several rules, each of which describes conditions for discriminating relevant pages using useful cooccurences or proximities among words, and parts in a page where those conditions are applicable. Thus they enable to classify a variety of pages precisely. Moreover, users are free to generate and apply filters at anytime. Through experiments we demonstarate that our filters increase the number of relevant pages we can get in a retrieval, compared to representatives of web search engine and relevance feedback method.
著者関連情報
© システム制御情報学会
前の記事 次の記事
feedback
Top