システム制御情報学会論文誌
Online ISSN : 2185-811X
Print ISSN : 1342-5668
ISSN-L : 1342-5668
マルチエージェント強化学習のための局所的政策共有システム
学習分類子システムからのアプローチ
井上 寛康下原 勝憲片井 修
著者情報
ジャーナル フリー

2006 年 19 巻 2 号 p. 59-68

詳細
抄録
Multi-agent reinforcement learning features many problems, one of these being state-space explosion based on combinations of policies that each agent has. Generally, if agents can share their policies, they can effectively search their enormous state space; that, however, simultaneously produces a risk of local optimality. Hence we propose a novel policy-sharing system based on the Learning Classifier System, on which agents locally share their policies. The aim of this system is to decrease the probability of falls into local optimality, and to effectively reduce state space by policy sharing. To verify the above, we use simplified soccer, which has discrete space and time.
著者関連情報
© システム制御情報学会
前の記事 次の記事
feedback
Top