システム制御情報学会論文誌
Online ISSN : 2185-811X
Print ISSN : 1342-5668
ISSN-L : 1342-5668
ロボットマニピュレータの学習的最適軌道計画
最適軌道探索回数の一減少法
逢坂 一正小野 敏郎
著者情報
ジャーナル フリー

1989 年 2 巻 1 号 p. 17-22

詳細
抄録
A number of trajectory planning algorithms exist for calculating the joint positions, velocities, and torques which will drive a robotic manipulator along a given geometric path. This paper presents a learning method for optimal trajectory planning of robotic manipulators of which all joints are rotational. When the start and end points of end effector are given in the Cartesian coordinates, the Fourier coefficients representing each joint velocity and interval of motion which specify the optimal trajectory in joint coordinates are searched by using the method of steepest descent. In the searching process, a learning algorithm based on the idea of linear approximation and utilization of the information on the known optimal trajectories is introduced. As numerical examples, the trajectories of two-link manipulator are simulated and the learning effect is confirmed.
著者関連情報
© システム制御情報学会
前の記事 次の記事
feedback
Top