ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Regular Article
Electrodeposition Behavior of Zn–Ni Alloys from an Alkaline Zincate Solution Containing Ethylenediamine
Hiroaki Nakano Shingo ArakawaSatoshi OueShigeo Kobayashi
著者情報
ジャーナル オープンアクセス HTML

2013 年 53 巻 10 号 p. 1864-1870

詳細
抄録
Electrodeposition behavior of Zn–Ni alloys was investigated at current densities of 5–500 A·m–2 and a charge of 5 × 104 C·m–2 at 308 K in an unagitated zincate solution containing ethylenediamine (EDA), which forms a stable complex with Ni2+ ions. In the case of the TEA solution, the Zn–Ni alloy exhibited normal codeposition at low current densities, wherein electrochemically more noble Ni deposited preferentially, while it exhibited anomalous codeposition at high current densities, wherein less noble Zn deposited preferentially. In the EDA solution, the alloy exhibited anomalous codeposition at high current densities; on the other hand, even at low current densities, the Ni content in the deposit was almost identical with the composition reference line, showing a behavior similar to anomalous codeposition. In the EDA solution, Ni deposition and H2 evolution were significantly suppressed over a larger region of current densities, showing the formation of an inhibitor for deposition, which results from Zn2+ ions in the cathode layer. The dependence of the current efficiency for alloy deposition on the current density was smaller in the EDA solution than in that containing TEA. In the TEA solution, the underpotential deposition of Zn apparently occurred with Ni, while in the EDA solution, the underpotential deposition of Zn never occurred, because Ni deposition was suppressed by the coexistence of Zn2+ ions even at low current densities. The throwing power of Zn–Ni alloys in the EDA solution was better than that in the TEA solution.
著者関連情報
© 2013 by The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top