ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Special Issue on "Advances in TRIP Effect Research"
Effect of Carbon and Nitrogen on Work-hardening Behavior in Metastable Austenitic Stainless Steel
Takuro Masumura Toshihiro Tsuchiyama
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2021 Volume 61 Issue 2 Pages 617-624

Details
Abstract

The effects of C and N on the work-hardening behaviors were compared in metastable austenitic steels in which varied amounts of C and N were separately added (Fe-18%Cr-8%Ni-(C,N) alloys). Although both C and N suppressed deformation-induced martensitic transformation during tensile deformation due to their austenite-stabilizing effect, they enhanced the work hardening of the steels. Comparison of C-added and N-added steels revealed that C addition more increased the work-hardening rate than N addition. In order to clarify the reason of the more significant effect of C, the individual hardness of deformed austenite and deformation-induced martensite (DIM) were measured in cold-rolled C-added and N-added steels by using a nano-indentation tester. The nanohardness of deformed austenite increased with increasing the thickness reduction and amount of added C and N. However, there is little difference between C-added and N-added steels in the hardening behavior of austenite, meaning that the difference in work-hardening rate of metastable austenitic steel between C-added and N-added steels is not derived from the hardness of deformed austenite but that of DIM. The nanohardness of DIM was significantly higher in the C-added steel than N-added steel, and thus, the main factor affecting the higher work hardening of 0.1C steel should be considered to be the higher hardness of C-containing DIM. In addition, in C-added steels, an excellent strength-ductility balance was achieved compared with N-added steel because the hard DIM is gradually formed until the later stage of deformation, meaning that pronounced TRIP effect was obtained in C-added steels than N-added steels.

Content from these authors
© 2021 The Iron and Steel Institute of Japan.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top