ISIJ International
Online ISSN : 1347-5460
Print ISSN : 0915-1559
ISSN-L : 0915-1559
Phase Evolution in Galvanneal Coatings on Steel Sheets
C. S. LinM. MeshiiC. C. Cheng
著者情報
ジャーナル フリー

1995 年 35 巻 5 号 p. 503-511

詳細
抄録

The evolution of the phases in galvanneal coatings on IF and IFP steel sheets is studied by combining optical microscopy (OM), scanning electron microscopy (SEM) with X-ray microanalysis (EDS) and transmission electron microscopy (TEM). The early stage of galvannealing is dominated by the formation of intermetallic compounds, particularly δ phase by constitutional supercooling except the region near the steel substrate where rapid formation of a thin alloy layer, the nature of which depends strongly on surface segregation of minor elements such as phophorus in a steel substrate. The Γ phase, which shows a well-defined columnar structure, grows at the expense of the Γ1 phase. The thickness of the Γ1 phase decreases, while maintaining the total thickness of (Γ+Γ1) constant, 2 μm, during galvannealing, Three different grain morphologies of δ phase have been observed. The surface segregation of phosphorus in steel was found to promote the nucleation of the Γ1 phase at the solid-liquid interface in the very beginning of galvannealing. The formation of the Γ phase was retarded accordingly. The hot-dip simulator was found to reproduce the microstructures of galvanneal coatings obtained by the in-line production and to facilitate the investigation of the phase evolution during hot-dip galvanizing and galvannealing.

著者関連情報
© The Iron and Steel Institute of Japan
前の記事 次の記事
feedback
Top