Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Online Estimation of Image Jacobian Matrix with Time-Delay Compensation
Xinmei WangWu WeiFeng LiuLongsheng WeiZhihui Liu
著者情報
ジャーナル オープンアクセス

2016 年 20 巻 2 号 p. 238-245

詳細
抄録

Time delay exists in image-based visual servoing system. To compensate for the impact of time delay, the feature point image and image Jacobian matrix with time-delay compensation is discussed in this paper. Firstly, the current position and velocity estimation of the feature point in the image space is based on Kalman filtering, but Markov chain model is applied in the description of the measurement noise, then the cross-correlation between the process noise and measurement noise is produced, the traditional Kalman filtering algorithm is restricted, by introducing a filtering revision matrix, the process equation and measurement equation are redefined, under the mathematical properties of the noise in Kalman filtering algorithm, the filtering revision matrix can be obtained for the elimination of the cross-correlation, a robust Kalman filtering model can be constructed. Secondly, for the measurement vectors which cannot be obtained during time delay in the robust Kalman filtering model, a polynomial fitting method is proposed in which the selection of the polynomial includes the position, the velocity and the acceleration of the feature point which impact the feature point trajectory. Finally, from the current predicted position and velocity of the feature point in the image space, the current accurate image Jacobian matrix with time-delay compensation can be obtained. Simulation and experimental results verify the feasibility and superiority of this method.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2016 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top