Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
A Comparative Sensor Based Multi-Classes Neural Network Classifications for Human Activity Recognition
Ramtin AminpourElmer Dadios
著者情報
ジャーナル オープンアクセス

2018 年 22 巻 5 号 p. 711-717

詳細
抄録

Human activity recognition with the smartphone could be important for many applications, especially since most of the people use this device in their daily life. A smartphone is a portable gadget with internal sensors and enough hardware power to accommodate this problem. In this paper, three neural network algorithms were compared to detect six major activities. The data are collected by a smartphone in real life and simulated on the remote server. The results show that MLP and GMDH neural network have better accuracy and performance compared with the LVQ neural network algorithm.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事 次の記事
feedback
Top