Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Forecasting Influenza Based on Autoregressive Moving Average and Holt-Winters Exponential Smoothing Models
Guohun ZhuLiping LiYuebin ZhengXiaowei ZhangHui Zou
著者情報
ジャーナル オープンアクセス

2021 年 25 巻 1 号 p. 138-144

詳細
抄録

Influenza outbreaks can be effectively prevented if further outbreaks are predicted as early as possible. This article proposes an autoregressive integrated moving average (ARIMA) model and a Holt-Winters exponential smoothing (HWES) model to analyze tweet data for predicting influenza outbreaks and to visualize the number of flu-infection-related tweets with heat maps. First, textual influenza data for Australia from June 2015 to June 2017 are collected through the Twitter Application Programming Interface (API). Next, the ARIMA and HWES models are applied to predict the difference between the flu tweets and confirmations from the Centers for Disease Control and Prevention. Finally, a visualized heat map based on influenza topics validates the modeling analysis in two different time zones. The results show that the average relative error of the ARIMA (HWES) model is 7.25% (11.29%) for the one-week flu forecast.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2021 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
前の記事
feedback
Top