2022 年 26 巻 1 号 p. 3-7
Generative adversarial network (GAN) model generates and discriminates images using an adversarial competitive strategy to generate high-quality images. The implementation of GAN in different fields is helpful for generating samples that are not easy to obtain. Image generation can help machine learning to balance data and improve the accuracy of the classifier. This paper introduces the principles of the GAN model and analyzes the advantages and disadvantages of improving GANs. The applications of GANs in image generation are analyzed. Finally, the problems of GANs in image generation are summarized.
この記事は最新の被引用情報を取得できません。