Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Application of Bispectrum Dimensionality Reduction Method in Ultrasonic Echo Signal Processing
Jian Tang Wenxiu YuGuoxin ZhaoXiangdong JiaoXuepeng Ding
著者情報
ジャーナル オープンアクセス

2022 年 26 巻 6 号 p. 1053-1060

詳細
抄録

Processing ultrasonic echo signals to obtain high-precision residual thickness information of the pipeline wall is the key to nondestructive testing of corrosion of a long-distance pipeline. The traditional power spectrum estimation method assumes that an analyzed echo signal is Gaussian, and the useful information is insufficiently extracted, which leads to errors in the processing results. In this paper, to solve this problem, the bispectrum, which requires the least amount of computation in higher-order spectral estimation, is proposed to process an echo signal with a non-minimum phase and non-Gaussian characteristics. The bispectrum is projected onto a one-dimensional frequency space using the dimensionality reduction method, and one-dimensional diagonal slices of the bispectrum are extracted to analyze the characteristics of the echo signal, which significantly improves the intuitiveness of data processing. The experimental results show that the bispectrum dimensionality reduction method has high accuracy in processing ultrasonic echo signals, and the relative error of the residua wall thickness is below 2%. A C-scan image displaying the shape, size, depth, and other characteristics of pipeline corrosion obtained by the proposed method is much better than that using the traditional power spectrum estimation method. Therefore, the proposed method is suitable for nondestructive testing of corrosion of long-distance pipelines.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
前の記事
feedback
Top