Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Bagging Algorithm Based on Possibilistic Data Interpolation for Brain-Computer Interface
Isao HayashiHonoka IrieShinji Tsuruse
著者情報
ジャーナル オープンアクセス

2024 年 28 巻 3 号 p. 623-633

詳細
抄録

Recently, brain-computer interfaces (BCIs) and brain-machine interfaces have garnered the attention of researchers. Based on connections with external devices, external computers and machines can be controlled by brain signals measured via near-infrared spectroscopy (NIRS) or electroencephalograph devices. Herein, we propose a novel bagging algorithm that generates interpolation data around misclassified data using a possibilistic function, to be applied to BCIs. In contrast to AdaBoost, which is a conventional ensemble learning method that increases the weight of misclassified data to incorporate them with high probability to the next datasets, we generate interpolation data using a membership function centered on misclassified data and incorporate them into the next datasets simultaneously. The interpolated data are known as virtual data herein. By adding the virtual data to the training data, the volume of the training data becomes sufficient for adjusting the discriminate boundary more accurately. Because the membership function is defined as a possibility distribution, this method is named the bagging algorithm based on the possibility distribution. Herein, we formulate a bagging-type ensemble learning based on the possibility distribution and discuss the usefulness of the proposed method for solving simple calculations using NIRS data.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2024 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
前の記事 次の記事
feedback
Top