2024 年 28 巻 3 号 p. 693-703
The direct optimization of ship hull designs using deep learning algorithms is increasingly expected, as it proposes optimization directions for designers almost instantaneously, without relying on complex, time-consuming, and expensive hydrodynamic simulations. In this study, we proposed a GAN-based 3D ship hull design optimization method. We eliminated the dependence on hydrodynamic simulations by training a separate model to predict ship performance indicators. Instead of a standard discriminator, we applied a relativistic average discriminator to obtain better feedback regarding the anomalous designs. We add two new loss functions for the generator: one restricts design variability, and the other sets improvement targets using feedback from the performance estimation model. In addition, we propose a new training strategy to improve learning effectiveness and avoid instability during training. The experimental results show that our model can optimize the form factor by 5.251% while limiting the deterioration of other indicators and the variability of the ship hull design.
この記事は最新の被引用情報を取得できません。