Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Improved Pedestrian Detection Algorithm Based on YOLOv5s
Zhihua LiYuanbiao ZhangChao Wang Guopeng TanYahui Yan
著者情報
ジャーナル オープンアクセス

2024 年 28 巻 4 号 p. 768-775

詳細
抄録

In this study, we propose YOLOv5s-PGD algorithm for dense pedestrian detection, which can improve the recall and reduce the number of parameters compared with YOLOv5s. First, a minimum scale detection layer has been added to deepen the pyramid’s depth and enhance detection accuracy. Second, ghost convolution has been employed to replace standard convolution to increase real-time performance of the algorithm. Finally, depth separable convolution has been used to address issues of high parameters and large computational complexity that lower the efficiency of the algorithm. Experiment results demonstrate that the detection accuracy of the YOLOv5s-PGD algorithm on the CrowdHuman public dataset is up to 85.1%, which is 2.2% higher than that of YOLOv5s. Furthermore, the number of parameters has decreased by 19.7%, and the calculation burden has decreased by 2.5%. Consequently, the proposed YOLOv5s-PGD algorithm better satisfies the requirements of real-time detection, model optimization, and terminal deployment in dense pedestrian scenarios.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2024 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
前の記事 次の記事
feedback
Top