Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Infrared and Visible Image Fusion with Overlapped Window Transformer
Xingwang Liu Bemnet Wondimagegnehu MershaKaoru HirotaYaping Dai
著者情報
ジャーナル オープンアクセス

2025 年 29 巻 4 号 p. 838-846

詳細
抄録

An overlap window-based transformer is proposed for infrared and visible image fusion. A multi-head self-attention mechanism based on overlapping windows is designed. By introducing overlapping regions between windows, local features can interact across different windows, avoiding the discontinuity and information isolation issues caused by non-overlapping partitions. The proposed model is trained using an unsupervised loss function composed of three terms: pixel, gradient, and structural loss. With the end-to-end model and the unsupervised loss function, our method eliminates the need to manually design complex activity-level measurements and fusion strategies. Extensive experiments on the public TNO (grayscale) and RoadScene (RGB) datasets demonstrate that the proposed method achieves the expected long-distance dependency modeling capabilities when fusing infrared and visible images, as well as the positive results in both qualitative and quantitative evaluations.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2025 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
前の記事 次の記事
feedback
Top