Journal of Advanced Mechanical Design, Systems, and Manufacturing
Online ISSN : 1881-3054
ISSN-L : 1881-3054
Papers
Investigation of kinesthetic illusion of biceps brachii muscle using a miniature voice coil motor
Hiraku KOMURATakeshi NOZAWAMasakazu HONDAMasahiro OHKA
Author information
JOURNAL OPEN ACCESS

2024 Volume 18 Issue 5 Pages JAMDSM0068

Details
Abstract

The kinesthetic illusion (KI) is a phenomenon in which transcutaneous vibration stimulation applied to a tendon induces the illusion of body movement. This phenomenon has potential applications in rehabilitation and virtual reality (VR). To effectively apply KI, precise vibration stimulation parameters (such as sine wave vibration with controlled frequency, acceleration, and pressing force against the tendon) must be delivered to various body parts. Thus, to realize this phenomenon, miniature vibrators must be developed and controlled. In this study, we developed a compact vibrator using a miniature voice coil motor to induce KI. We constructed a control system to regulate the target acceleration even in the presence of variations in the reactive forces from the tendon. Using the developed vibrator, we applied KI to the biceps brachii tendon and determined the optimal vibration stimulation conditions. The results revealed that the optimal vibration stimulation conditions for each subject’s biceps brachii muscle were related to the thickness of the upper arm. This result demonstrates the ability to determine guidelines for optimal stimulation conditions based on the physical characteristics of each individual participant. The increased ease of experiencing KI is expected to pave the way for rehabilitation using vibrators in wearable robots.

Content from these authors
© 2024 by The Japan Society of Mechanical Engineers

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top