A model of a single liquid drop colliding on solid surface is developed based on Moving Particle Semi-implicit (MPS) method. The mathematical model involves gravity, viscosity and surface tension. The wettability between the impact liquid and the solid surface is modeled by the contact angle model and the non-slip boundary condition. The particles of the drop are divided into four types in which the model varies to simulate the liquid particles in different area. The model is validated by the comparison of the theoretical results and the experiment results from literature. The complete dynamic process including spreading, recoiling, re-bouncing and splashing after the impact is simulated and analyzed. It is found that the contact angle plays an important role in the dynamic processes after impact. The impact drop is likely to recoil and re-bounce from the surface in the cases of high contact angle so that the critical Weber number for break up are not constant in different liquid and boundary condition.