Abstract
The hydrogen-bonded guanine tetrad, or G-quartet has been implicated in a variety of biological roles, including the function of chromosome telomeres. Here effect of the hydroxylation of guanosine at the 8 position on the G-quartet formation was examined. Electrospray inonization mass (ESI-MS) spectra of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 2'-deoxyguanosine (dG) were measured in order to know whether or not 8-oxodG forms a tetrameric structure as 2'-deoxyguanosine forms in teromeres. The ESI-MS spectra of dG shows prominent peaks at m/z 290, m/z 557, and m/z 1092, corresponding to [dG + Na]+, [dG2 + Na]+, and [dG4 + Na]+ in the presence of 0.1 mM NaCl. On the other hand, the ESI-MS spectra of 8-oxodG in the presence of 0.1 mM NaCl shows prominent peaks at m/z 306 and m/z 589, corresponding to [8-oxodG + Na]+ and [8-oxodG2 + Na]+. The results showed that 8-oxodG forms a relatively unstable tetrameric structure compared with dG.