Journal of Clinical Biochemistry and Nutrition
Online ISSN : 1880-5086
Print ISSN : 0912-0009
ISSN-L : 0912-0009
Original Articles
Exogenously-added copper/zinc superoxide dismutase rescues damage of endothelial cells from lethal irradiation
Takako TominagaMisao HachiyaTomohiro ShibataYuichiro SakamotoKenji TakiMakoto Akashi
Author information
JOURNAL FREE ACCESS

2011 Volume 50 Issue 1 Pages 78-83

Details
Abstract

The vascular endothelium is important for the early and late effects observed in lethally irradiated tissue and organs. We examined the effects of exogenously added superoxide dismutase on cell survival and angiogenesis in lethally irradiated human primary umbilical vein endothelial cells. Cell survival was significantly improved in superoxide dismutase-treated cells; the addition of superoxide dismutase to cells after irradiation was also effective for increased survival, as it was before irradiation. Moreover, treatment of cells with superoxide dismutase enhanced the phosphorylation of mitogen-activated protein/extracellular signal-regulated kinase/extracellular signal regulated kinases 1 and 2 in human primary umbilical vein endothelial cells. The addition of superoxide dismutase to cells after irradiation attenuated the reduction of angiogenesis by irradiation, and inhibition of the mitogen-activated protein/extracellular signal-regulated kinase/extracellular signal regulated kinases signaling pathway abrogated the rescue effect of superoxide dismutase. Our results suggest that superoxide dismutase rescues human primary umbilical vein endothelial cells from endothelial dysfunction caused by irradiation via a pathway requiring activation of mitogen-activated protein/extracellular signal-regulated kinase/extracellular signal regulated kinases 1 and 2.

Content from these authors
© 2011 by The Editorial Secretariat of JCBN
Previous article Next article
feedback
Top