Journal of Clinical Biochemistry and Nutrition
Online ISSN : 1880-5086
Print ISSN : 0912-0009
ISSN-L : 0912-0009
Original Articles
Enzymatically synthesized glycogen inhibited degranulation and inflammatory responses through stimulation of intestine
Yasukiyo YoshiokaMasako InoueHiroko YoshiokaTomoya KitakazeTakashi FuruyashikiNaoki AbeHitoshi Ashida
著者情報
ジャーナル フリー

2020 年 67 巻 1 号 p. 67-73

詳細
抄録

The patients of type I allergic diseases were increased in the developed countries. Recently, many studies have focused on food factors with anti-allergic activities. Enzymatically synthesized glycogen, a polysaccharide with a multi-branched α-1,4 and α-1,6 linkages, is a commercially available product from natural plant starch, and has immunostimulation activity. However, effect of enzymatically synthesized glycogen on the anti-allergic activity was unclear yet. In this study, we investigated that enzymatically synthesized glycogen inhibited allergic and inflammatory responses using a co-culture system consisting of Caco-2 and RBL-2H3 cells. Enzymatically synthesized glycogen inhibited antigen-induced β-hexosaminidase release and production of TNF-α and IL-6 in RBL-2H3 cells in the co-culture system. Furthermore, enzymatically synthesized glycogen inhibited antigen-induced phosphorylation of tyrosine kinases, phospholipase C γ1/2, mitogen-activated protein kinases and Akt. Anti-allergic and anti-inflammatory activities of enzymatically synthesized glycogen were indirect action through stimulating Caco-2 cells, but not by the direct interaction with RBL-2H3 cells, because enzymatically synthesized glycogen did not permeate Caco-2 cells. These findings suggest that enzymatically synthesized glycogen is an effective food ingredient for prevention of type I allergy through stimulating the intestinal cells.

著者関連情報
© 2020 JCBN
前の記事 次の記事
feedback
Top