Journal of Clinical Biochemistry and Nutrition
Online ISSN : 1880-5086
Print ISSN : 0912-0009
ISSN-L : 0912-0009

This article has now been updated. Please use the final version.

Numerical analyses of intestinal microbiota by data mining
Toshio KobayashiAkira Andoh
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 17-84


The human intestinal microbiota has a close relationship with health control and causes of diseases, and a vast number of scientific papers on this topic have been published recently. Some progress has been made in identifying the causes or species of related microbiota, and successful results of data mining are reviewed here. Humans who are targets of a disease have their own individual characteristics, including various types of noise because of their individual life style and history. The quantitatively dominant bacterial species are not always deeply connected with a target disease. Instead of conventional simple comparisons of the statistical record, here the Gini-coefficient (i.e., evaluation of the uniformity of a group) was applied to minimize the effects of various types of noise in the data. A series of results were reviewed comparatively for normal daily life, disease and technical aspects of data mining. Some representative cases (i.e., heavy smokers, Crohn’s disease, coronary artery disease and prediction accuracy of diagnosis) are discussed in detail. In conclusion, data mining is useful for general diagnostic applications with reasonable cost and reproducibility.

Content from these authors
© 2018 JCBN