Journal of Computer Chemistry, Japan
Online ISSN : 1347-3824
Print ISSN : 1347-1767
ISSN-L : 1347-1767
研究論文
Development of Three Dimensional Kinetic Monte Carlo (3D-KMC) Grain Growth Simulator Based on Tight Binding Quantum Chemical Molecular Dynamics and Its Application to the Analysis of Thermal Grain Growth of CeO2 and Rh/CeO2
Ai SUZUKIMarc C. WILLIAMSKenji INABARyo SATOKotaro OKUSHIRyuji MIURANozomu HATAKEYAMAAkira MIYAMOTO
著者情報
ジャーナル フリー

2013 年 12 巻 1 号 p. 61-70

詳細
抄録

The electronic configuration between the interface of supported Rh and CeO2 (111) surface was investigated by Tight Binding based Ultra Accelerated Quantum Chemical Molecular Dynamics method (TB-UAQCMD) at 1073 K. Time courses of bond energies of Rh-O (-Ce) plots for 5000 fs showed gradual increases of bond strength between oxygen and rhodium atoms in the uppersurface of the CeO2 (111). This caused the anchoring effect of Rh-O (-Ce) bonds in the form of Rh-O (-Ce). Therefore total energies of the Ce-O bonds in the Rh/CeO2 were found to become more stable than that in the pure CeO2. The activation energy of grain growth of Rh/CeO2 nanoparticles was estimated by this deviation in these Ce-O bond energies. Experimentally observed suppression in the grain growth of Rh/CeO2 nanoparticles relative to those without Rh was quantitatively reproduced by three dimensional Kinetic Monte Carlo method (3D-KMC).

著者関連情報
© Society of Computer Chemistry, Japan
前の記事 次の記事
feedback
Top