Journal of Computer Chemistry, Japan
Online ISSN : 1347-3824
Print ISSN : 1347-1767
ISSN-L : 1347-1767
速報
Performance Research of Clustering Methods for Detecting State Transition Trajectories in Hemoglobin
Kei TAKAMIYukichi KITAMURAMasataka NAGAOKA
著者情報
ジャーナル フリー HTML

2020 年 19 巻 4 号 p. 154-157

詳細
抄録

The time-series clustering method is one of unsupervised machine learning techniques that classify time-series data. In this article, we applied three methods to the clustering analysis for 200 molecular dynamics (MD) trajectories of human adult hemoglobin (HbA), and have reported their clustering performances for detecting the T-R state transition trajectories (TrajT-R). By compared with their silhouette indices, we have discussed the proper clustering conditions.

Fullsize Image
著者関連情報
© 2020 Society of Computer Chemistry, Japan
前の記事 次の記事
feedback
Top