Journal of Computer Chemistry, Japan
Online ISSN : 1347-3824
Print ISSN : 1347-1767
ISSN-L : 1347-1767
速報
分子軌道エネルギーを用いた機械学習によるエントロピーの予測
結城 敬史中原 和加奈寺前 裕之
著者情報
ジャーナル フリー HTML

2023 年 22 巻 2 号 p. 31-33

詳細
抄録

The values of the entropy of 148 small organic molecules have been estimated by machine learning with only molecular orbital energies as the explanatory variables. Out of 148 molecules,we used 104 molecules for the training set and 44 molecules for the test set. We used 139 regression methods of R/caret package for machine learning. We evaluated values by RMSE (Root Mean Squared Error) and R2 (coefficient of determination). From those evaluation,xgbLinear (eXtreme Gradient Boosting) and RRFglobal (Regularized Random Forest) are considered better than other regression methods. It has been proved that the entropy can be predicted by the molecular orbital energies only.

Fullsize Image
著者関連情報
© 2023 日本コンピュータ化学会
前の記事 次の記事
feedback
Top